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Supplementary Note 1: Introduction 

Here, we provide a series of supplementary analyses that explore the sensitivity of our results to various modeling 

choices. We explore the effects of three primary analytical decisions: (1) the impact of normalized versus non-

normalized calibrated radiocarbon dates; (2) the choice of back-calibration simulation procedure used to fit the 

demographic models to the observed SPD; and (3) the distance measure used in the Approximate Bayesian 

Computation (ABC) rejection algorithm, specifically Euclidean distance and normalized root mean squared error. 

As demonstrated in the supplementary results below, our conclusions are robust to these different modeling choices. 

We conducted all of our analyses in R version 4.0.3 1  using the rcarbon 1.4.1 package 2. All data and fully 

reproducible code can be found at https://github.com/rdinapoli/RN_demography. Note that the ABC model fitting 

procedure is computationally intensive and requires hours to days to complete depending on computational 

resources.  

 

mailto:dinapoli@binghamton.edu
https://github.com/rdinapoli/RN_demography
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Supplementary Note 2: Normalization.  

As discussed in the main text, normalizing radiocarbon dates during calibration can cause spurious spikes in SPDs at 

steep portions of the calibration curve 2–4. We thus explored the fit of the demographic models using both 

normalized and non-normalized radiocarbon dates. 

 

To illustrate the dangers of directly comparing SPDs to environmental proxies, and the divergent results one might 

obtain by normalizing 14C dates, Figure S1 compares the apparent relationship between the observed normalized and 

non-normalized SPDs with forest cover and SOI. If we partition the SPD into periods prior to and following Lima et 

al.’s 5 proposed collapse event, which also coincides with major reductions in forest cover and shifts to positive SOI 

phases, the normalized and non-normalized SPDs yield contradictory patterns. Prior to ca. 500 cal BP the 

normalized SPD shows a strong positive correlation with palm cover (rho = 0.8) and SOI (rho = 0.7), whereas after 

this the relationship with palm cover weakens (rho = 0.3) and reverses for SOI (rho = -0.5). In contrast, the non-

normalized SPD shows a consistent negative relationship with palm cover and a positive relationship with SOI. The 

normalized SPD thus suggests that relative population declined with decreasing forest cover and increasing SOI, 

whereas the non-normalized SPD suggests precisely the opposite relationship. Because such direct comparisons do 

not account for sampling and measurement errors, null hypothesis tests can lead to overconfidence in misleading 

results, and in this case, to inflated and infinitesimal P-values. 

 

 

 
Figure S1.The relationship between the observed Rapa Nui SPDs and changes in forest cover and SOI index. a) 

non-normalized SPD as a function of palm forest change, b) non-normalized SPD as a function of changing SOI 

index, c) normalized SPD as a function of palm forest change, d) normalized SPD as a function of changing SOI 
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index. The black vertical dashed line is the approximate timing of Lima et al.’s 5 proposed collapse event that 

coincides with major changes in SOI and forest cover. e) showing the correlation between palm cover and the 

normalized and non-normalized SPD before and after this proposed collapse, and f) shows the correlation with SOI 

index. 

 

Supplementary Note 3: Taphonomic bias 

To explore the potential impact of taphonomy on the shape of the observed SPDs, we applied the correction of 

Surovell et al.6 to both the normalized and non-normalized SPD. Figure S2 shows the results and suggests no 

meaningful observable difference between the original and taphonomically corrected SPD. 

 

 
Figure S2.Comparison of taphonomically adjusted and non-adjusted SPDs for the Rapa Nui dataset. 

 

 

Supplementary Note 4: Back-calibration methods.  

A further complication of SPD model fitting is the ability to simulate theoretical SPDs of radiocarbon dates 

consistent with the proposed model and capable of emulating features characteristic of empirical SPD dictated by 

calibration effects. Commonly, this procedure consists of randomly sampling dates from a vector of probability in 

calendar time followed by back-calibration, and calibration. Crema and Bevan 2 have shown that for discrete time-

steps this result can be achieved by calibrating the entire vector of probability (see equation 1 in Crema and Bevan 2) 

and sampling directly in 14C age. However, this approach, referred to as calsample, does not consistently recover 

artificial peaks typically observed in SPDs. Bevan et al.7  have devised an alternative algorithm (uncalsample) that 

applies a weighting scheme based on a uniform probability model. In order to explore the sensitivity to these 

alternative algorithms, we used both calsample and uncalsample approaches in our calculations.  
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Supplementary Note 5: Prior predictive checks 

Table S1 shows the prior distributions of the demographic model parameters as described in the Methods section of 

the main text. 

 

Table S1. Prior distributions of the demographic model parameters. 

Symbol Description Prior Relevant 

model 

𝑁𝑡=0 Initial population as a proportion of carrying 

capacity 

Exponential ~ (𝜆=10) All 

r Intrinsic growth rate Exponential ~ (𝜆=50) All 

𝛽palm Scaling parameter on palms Gaussian ~ (0, 0.01) 2,4 

𝛽soi Scaling parameter on SOI Gaussian ~ (0, 0.2) 3,4 

 

Figure S3 shows a diagram of the demographic model structures. For each simulation from a model, a prior 

parameter value is selected and used to generate a vector of population sizes (Nt) for the time period of interest, 

which is transformed into a probability density function that is compared to the observed SPD. The four bottom 

panels in Figure S3 show examples of different possible model outcomes depending on the particular prior values. 
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Figure S3. Diagram of demographic model structure. The prior values used for this illustration are as 

follows: Model 1 (Nt0=0.005,  r=0.025), Model 2 (Nt0=0.005, r=0.05, βpalm=0.02, βsoi=0), Model 3 (Nt0=0.005, 

r=0.05, βpalm=0, βsoi=-0.4), Model 4 (Nt0=0.005, r=0.025, βpalm=0.02, βsoi=-0.4). 
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The plots below show prior predictive checks based on 1,000 simulated iterations of models 1-4. 

 

 
Figure S4. Prior predictive checks for models 1-4 by population size (Nt). 
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Figure S5. Prior predictive checks for models 1-4 by probability density. 

 

Supplementary Note 6: Distance measures for ABC rejection algorithm.  

The rejection algorithm that underlies the ABC model fitting procedure requires a measure of distance between each 

realization of the models and the observed SPD. As discussed in previous studies 2 the observed and simulated SPDs 

can be treated as test statistics that can be directly compared. Here we use two measures of distance— Euclidean 

distance and normalized root mean squared error (NRMSE). Euclidean distance (𝜀𝐸) is calculated with the following 

formula: 

𝜀𝐸 =  √∑ (𝑆𝑜,𝑡 −  𝑆𝑠,𝑡)2𝑇
𝑡=1      (1) 

where 𝑆𝑜,𝑡 is the probability density of observed SPD at time t and 𝑆𝑠,𝑡 is the probability density of a simulated SPD 

from the model at the same timestep. 

NRMSE (𝜀𝑁) is calculated with: 

𝜀𝑁 =  
√∑ (𝑆𝑜,𝑡− 𝑆𝑠,𝑡)2𝑇

𝑡=0

𝑇/𝜎𝑆𝑜
      (2) 

where 𝑇 is the length of time in the model and 𝜎𝑆𝑜 is the standard deviation for the probability density of the 

observed SPD. For both distance measures, smaller values indicate a closer fit between the realization of the model 

and the observed data. 
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Supplementary Note 7: Posterior predictive checks 

Below, we present the posterior predictive checks for each iteration of models 1-4. All results below are based on a 

rejection algorithm using Euclidean distance. Using normalized root-mean-square-error produces nearly identical 

results, which can be found at https://github.com/rdinapoli/RN_demography. 

  

 
Figure S6. Posterior predictive check for model 1 using Euclidean distance. 

 

https://github.com/rdinapoli/RN_demography
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Figure S7. Posterior predictive check for model 2 using euclidean distance. 
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Figure S8. Posterior predictive check for model 3 using euclidean distance. 
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Figure S9. Posterior predictive check for model 4 using euclidean distance. 

 

Supplementary Note 8: Joint posterior distributions 

Below, we present the joint posterior distributions of the parameters for each model to check for potential 

collinearity. None of the plots in S8-S23 suggest a correlation between the model parameters. All results below are 

based on a rejection algorithm using Euclidean distance. Using normalized root-mean-square-error produces nearly 

identical results, which can be found at https://github.com/rdinapoli/RN_demography. 

 

 

 

 

 

https://github.com/rdinapoli/RN_demography
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Model 1 

 
Figure S10. Model 1 joint posteriors using calsample and non-normalized SPD. 
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Figure S11. Model 1 joint posteriors using calsample and normalized SPD. 
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Figure S12. Model 1 joint posteriors using uncalsample and non-normalized SPD. 
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Figure S13. Model 1joint posteriors using uncalsample and normalized SPD. 
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Model 2 

 

 
Figure S14. Model 2 joint posteriors using calsample and non-normalized SPD. 
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Figure S15. Model 2 joint posteriors using calsample and normalized SPD. 
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Figure S16. Model 2 joint posteriors using uncalsample and non-normalized SPD. 
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Figure S17. Model 2 joint posteriors using uncalsample and normalized SPD. 
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Model 3 

 

 
Figure S18. Model 3 joint posteriors using calsample and non-normalized SPD. 

 



21 
 

 
Figure S19. Model 3 joint posteriors using calsample and normalized SPD. 
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Figure S20. Model 3 joint posteriors using uncalsample and non-normalized SPD.  
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Figure S21. Model 3 joint posteriors using uncalsample and normalized SPD. 
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Model 4 

 

 
Figure S22. Model 4 joint posteriors using calsample and non-normalized SPD. 
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Figure S23. Model 4 joint posteriors using calsample and normalized SPD. 
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Figure S24. Model 4 joint posteriors using uncalsample and non-normalized SPD. 
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Figure S25. Model 4 joint posteriors using uncalsample and normalized SPD. 

 

Supplementary Note 9: Marginal Posterior Distributions  

Below, we present the marginal posterior distributions for each iteration of models 1-4. All results below (Fig. S24-

S39) are based on a rejection algorithm using Euclidean distance. Using normalized root-mean-square-error 

produces nearly identical results, which can be found at https://github.com/rdinapoli/RN_demography. 

 

 

 

 

 

https://github.com/rdinapoli/RN_demography
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Model 1 

 

 
Figure S26. Model 1 posterior probabilities using calsample and non-normalized SPD. Dotted lines represent the 

prior distribution. 

 

 
Figure S27. Model 1 posterior probabilities using calsample and normalized SPD. Dotted lines represent the prior 

distribution. 
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Figure S28. Model 1 posterior probabilities using uncalsample and non-normalized SPD. Note these are the results 

presented in the main text for model 1. Dotted lines represent the prior distribution. 

 

 
Figure S29. Model 1 posterior probabilities using uncalsample and normalized SPD. Dotted lines represent the prior 

distribution. 
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Model 2. 

 

 
Figure S30. Model 2 posterior probabilities using calsample and non-normalized SPD. Dotted lines represent the 

prior distribution. 

 

 
Figure S31. Model 2 posterior probabilities using calsample and normalized SPD. Dotted lines represent the prior 

distribution. 
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Figure S32. Model 2 posterior probabilities using uncalsample and non-normalized SPD. Note these are the results 

presented for Model 2 in the main text. Dotted lines represent the prior distribution. 

 

 
Figure S33. Model 2 posterior probabilities using uncalsample and normalized SPD. Dotted lines represent the prior 

distribution. 
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Model 3 

 

 
Figure S34. Model 3 posterior probabilities using calsample and non-normalized SPD. Dotted lines represent the 

prior distribution. 

 

 
Figure S35. Model 3 posterior probabilities using calsample and normalized SPD. Dotted lines represent the prior 

distribution. 
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Figure S36. Model 3 posterior probabilities using uncalsample and non-normalized SPD. Note these are the results 

presented for Model 3 in the main text. Dotted lines represent the prior distribution. 

 

 
Figure S37. Model 3 posterior probabilities using uncalsample and normalized SPD. Dotted lines represent the prior 

distribution. 
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Model 4. 

 

 
Figure S38. Model 4 posterior probabilities using calsample and non-normalized SPD. Dotted lines represent the 

prior distribution. 
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Figure S39. Model 4 posterior probabilities using calsample and normalized SPD. Dotted lines represent the prior 

distribution. 
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Figure S40. Model 4 posterior probabilities using uncalsample and non-normalized SPD. Note that these are the 

results presented for Model 4 in the main text. Dotted lines represent the prior distribution. 
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Figure S41. Model 4 posterior probabilities using uncalsample and normalized SPD. 

 

 

Supplementary Note 10: SPD Posterior Predictive Checks 

The plots below show posterior predictive checks (PPC) of the observed Rapa Nui SPD fitted to the four 

demographic models for this portion of the Southern Hemisphere radiocarbon calibration curve 8. All results (S40-

S43) below are based on a rejection algorithm using Euclidean distance. Using normalized root-mean-square-error 

produces nearly identical results, which can be found at https://github.com/rdinapoli/RN_demography  

 

 

 

 

 

https://github.com/rdinapoli/RN_demography
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Model 1 

 
Figure S42. Posterior results for model 1 using four combinations of normalization and back-calibration. The solid 

red line is the observed SPD, the dashed black line is the median of the PCC, and the grey shading shows the 95% 

PPC interval. 
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Model 2 

 

 
Figure S43. Posterior results for model 2 using four combinations of normalization and back-calibration. The solid 

red line is the observed SPD, the dashed black line is the median of the PCC, and the grey shading shows the 95% 

PPC interval. 
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Model 3 

 

 
Figure S44. Posterior results for model 3 using four combinations of normalization and back-calibration. The solid 

red line is the observed SPD, the dashed black line is the median of the PCC, and the grey shading shows the 95% 

PPC interval. 
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Model 4 

 
Figure S45. Posterior results for model 4 using four combinations of normalization and back-calibration. The solid 

red line is the observed SPD, the dashed black line is the median of the PCC, and the grey shading shows the 95% 

PPC interval. 
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Supplementary Note 11: Bayes Factor Matrices 

The tables (S2-S9) below show the results of Bayes factor comparisons of model fits using both Euclidean distance 

and RMSE as the distance measure for the ABC rejection algorithm. 

Bayes Factors using Euclidean distance 

Table S2. Bayes factors using non-normalized dates and uncalsample. Note these are the values corresponding to 

the model results presented in the main text. 
 

Model 1 Model 2 Model 3 Model 4 

Model 1 — 0.9471545 0.8759398 0.9137255 

Model 2 1.055794 — 0.9248120 0.9647059 

Model 3 1.141631  1.0813008 — 1.0431373 

Model 4 1.094421 1.0365854 0.9586466 — 

 

Table S3. Bayes factors using normalized dates and uncalsample. 
 

Model 1 Model 2 Model 3 Model 4 

Model 1 —  0.9588477 0.8661710  0.9137255 

Model 2 1.042918 — 0.9033457 0.9529412 

Model 3 1.154506 1.1069959 — 1.0549020 

Model 4 1.094421 1.0493827  0.9479554 — 

 

Table S4. Bayes factors using normalized dates and calsample. 
 

Model 1 Model 2 Model 3 Model 4 

Model 1 —   0.9186992 0.8692308 0.8432836 

Model 2 1.088496 — 0.9461538 0.9179104 

Model 3 1.150442 1.0569106 — 0.9701493 

Model 4 1.185841 1.0894309 1.0307692 — 
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Table S5. Bayes factors using non-normalized dates and calsample. 
 

Model 1 Model 2 Model 3 Model 4 

Model 1 —  0.8945148 0.8153846 0.7285223 

Model 2 1.117925 — 0.9115385 0.8144330 

Model 3 1.226415 1.0970464 — 0.8934708 

Model 4 1.372642 1.2278481 1.1192308 — 

 

Bayes Factors using normalized root mean squared error 

Table S6. Bayes factors using normalized dates and uncalsample. 
 

Model 1 Model 2 Model 3 Model 4 

Model 1 —  1.004237 0.8777778 0.9221790 

Model 2 0.9957806 — 0.8740741 0.9182879 

Model 3 1.1392405 1.144068 — 1.0505837 

Model 4 1.0843882 1.088983 0.9518519 — 

 

Table S7. Bayes factors using non-normalized dates and uncalsample. 
 

Model 1 Model 2 Model 3 Model 4 

Model 1 —  0.9833333 0.8773234 0.9254902 

Model 2 1.016949 — 0.8921933 0.9411765 

Model 3 1.139831 1.1208333 — 1.0549020 

Model 4 1.080508 1.0625000 0.9479554 — 

 

Table S8. Bayes factors using normalized dates and calsample. 
 

Model 1 Model 2 Model 3 Model 4 

Model 1 —  0.908 0.908 0.8315018 

Model 2 1.101322 — 1.000 0.9157509 

Model 3 1.101322 1.000 — 0.9157509 

Model 4 1.202643 1.092 1.092 — 
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Table S9. Bayes factors using non-normalized dates and calsample. 
 

Model 1 Model 2 Model 3 Model 4 

Model 1 —  0.9177489 0.7794118 0.7438596 

Model 2 1.089623 — 0.8492647 0.8105263 

Model 3 1.283019 1.1774892 — 0.9543860 

Model 4 1.344340 1.2337662 1.0477941 — 
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